效率为5.1%的过渡金属二分法太阳能电池

Share

Transition metal dichalcogenides (TMDs) are two-dimensional materials with remarkable semiconducting properties and high光吸收系数fiCients,使其适合于在航空航天,建筑,电动汽车和可穿戴电子产品中使用潜在应用的半透明和柔性太阳能电池,其中轻巧,高功率每次重量比和灵活性是非常可取的。

With this in mind, a group of scientists fromStanford University已经建立了一个TMD太阳能电池,该电池据称可以在与良好的薄膜技术(例如cadmium telluride(CDTE);铜,凹,凝胶和硒(CIGS);无定形硅(a-si);和III-V太阳能电池

“By adopting novel device architecture and integration methods we achieved over 10 times higher power conversion efficiency and over 100 times higher power per weight, compared to previous demonstrations,” the research corresponding author, Koosha Nassiri Nazif, told新利18appnet

The cell was built with an超薄,轻巧和佛罗里达州exible polyimide (PI) subs厚度为5μm的透明孔收集石墨烯contacts doped with二氧化物(MOO2), and multi-layer tungsten diselenide (WSe2)吸收测量约200海里。此外,the U.S. group used passivation and anti-reflection coatings, and optically-reflective electron-collecting gold (Au) bottom contacts.

The use of graphene contacts is the core of the cell technology as it减轻费米级固定,这是一种现象,发生在太阳能电池中,尤其是在TMD设备中,当an energy barrier is created for electrons and holes by bending the bands at the semiconductor interface. The Fermi levels define the efficient conversion of the energy of radiation into electrochemical energy and Fermi-level pinning has been responsible for limiting the power conversion efficiency of the best TMD solar cells to around 2%.

流行内容

该设备在标准太阳辐射条件下进行了测试,显示出5.1% and a每次重量回报的功率为4.4 w/g,科学家说,对于最佳设备的效率为0.7%,每次重量为0.04 w/g的功率,并具有以前的研究中构建的灵活结构。通过将PI底物厚度降低至1μm,它们也能够每重量的细胞功率提高到8.6 W/g。他们进一步解释说:“根据为TMD光伏电池开发的现实,详细的平衡模型,单连接多层TMD原则上可以实现约27%的功率转换效率,并具有优化的光学和电子设计。”

根据研究人员的说法,这些细胞有可能超越有机和钙钛矿太阳能电池stability challenges that these two cell technologies present.

纳西里·纳西夫(Nassiri Nazif)告诉NASSIRI NASZIF:“将TMD增长扩大到大面积的研究工作将很快实现可扩展和低成本的TMD光伏电池的生产,类似于其他甲状腺素太阳能电池,例如CDTE和CIGS。”新利18appnet。“The methods for scalable and large-area fabrication of TMDs already exist. However, there has not yet been any demonstration of large-area (>1cm2) TMD solar cells reported in the literature.”

Looking forward, the Stanford group said it wants to demonstrate large-area TMD solar cells made in a scalable fashion. Its findings will be published soon innature communications

This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact:editors@pv-magazine.com